Improving a Discriminative Approach to Object Recognition Using Image Patches
نویسندگان
چکیده
In this paper we extend a method that uses image patch histograms and discriminative training to recognize objects in cluttered scenes. The method generalizes and performs well for different tasks, e.g. for radiograph recognition and recognition of objects in cluttered scenes. Here, we further investigate this approach and propose several extensions. Most importantly, the method is substantially improved by adding multi-scale features so that it better accounts for objects of different sizes. Other extensions tested include the use of Sobel features, the generalization of histograms, a method to account for varying image brightness in the PCA domain, and SVMs for classification. The results are improved significantly, i.e. on average we have a 59% relative reduction of the error rate and we are able to obtain a new best error rate of 1.1% on the Caltech motorbikes task.
منابع مشابه
Object Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملDetermining Patch Saliency Using Low-Level Context
The increased use of context for high level reasoning has been popular in recent works to increase recognition accuracy. In this paper, we consider an orthogonal application of context. We explore the use of context to determine which low-level appearance cues in an image are salient or representative of an image’s contents. Existing classes of low-level saliency measures for image patches incl...
متن کاملCombinatorial and statistical methods for part selection for object recognition
In object recognition tasks, where images are represented as constellations of image patches, often many patches correspond to the cluttered background. In this paper, we present a two-stage method for selecting the image patches which characterize the target object class and are capable of discriminating between the positive images containing the target objects and the complementary negative i...
متن کاملLearning a discriminative hidden part model for human action recognition
We present a discriminative part-based approach for human action recognition from video sequences using motion features. Our model is based on the recently proposed hidden conditional random field (hCRF) for object recognition. Similar to hCRF for object recognition, we model a human action by a flexible constellation of parts conditioned on image observations. Different from object recognition...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کامل